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ABSTRACT

“~A three-dimensional version of the Beam-Warming scheme for solving the
compressible Navier-Stokes equations was implemented on the Cray-1l computer.
The scheme is implicit and second-order accurate.
torized, allows for complicated geometries and includes a thin layer turbu-

lence model. Timings and comparisons are given.

the full viscous model is included;\
AN

\
(SN

pTiC

CcoPY
INSPECTED

-
2

The code is totally vec-

A preliminary discussion of

"P_virsjiribut ton/ B
Avallability Codes

Accesgion For
NTIS GR4%I

DTIC TA3B {1
nannsunced !
Justification .

By.. _

~ lAvail and/or
Diest Special




I. INTRODUCTION

In recent years substantial progress has been made in the area of numeri-
cal simulation of fluid flows. However, one major limitation has been the size
and speed of the available computers. Now the new generations of computers, in-
cluding the ILLTAC IV, the Cray-1l, and the CYBER 205, use vector architectures
and thus offer new possibilities i{n the area of fluid flow simulation.

The major purpose of this prpject was to implement the Beam-Warming scheme
for solving the Navier-Stokes equations [1] on the Cray-1l. More precisely, the
plan was to combine the best parts of the codes written by Steger and Pulliam
[2) for the NASA-Ames CDC 7600 and by Lomax and Pulliam [3] for the NASA-Ames
ILLIAC IV, so as to take maximum advantage of the Cray-l. Our task was compli-
cated by the fact that the major loops in the two codes were in opposite orders.
However, we were able to capture all of the important vector operations of the
ILLIAC code and accomplish our goal.

A secondary goal of the project was to include the full viscous effect in

the above described code. The implementation of this goal has not been completed.

2. EQUATIONS IN NONDIMENSIONAL FORM

We are interested in the numerical simulation of unsteady, three-~dimensional
flows of a compressible, viscous fluid in an arbitrary geometry. We wish to use
a grid generating scheme so we assume that the geometry of the physical problem
given in x-y-z space has been mapped onto a rectangular parallelpiped in the -
n-f space and that the metrics &x, £y, &z, nx, ny, nz, ix, {y, 7z and the Jaco-
bian J of the mapping are provided. (For work on grid generating schemes see

[4], [5] or [6].) Hence we must solve the following system of equations.
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and pressure (p = (y-1) [e - .Sp(u2 + v+ wz)]). respectively; u, A, «, Pr,

Re are the dynamic viscosity, kinematic viscosity, coefficient of thermal

conductivity, Prandtl number, and Reynolds number; g% - ({x n, ) ({ = 35
3 9 3 9 3, 93 3 3 8

é“, F,, and ga are E, F, and Q evaluated at the free stream values of g.

) and

)

3. THIN LAYER APPROXIMATION

For high Reynolds number flows with the assumptions that the n-variables is
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normal to the mapped rigid boundary and that we are only interested in a thin
layer of flow along the rigid surface (or equivalently that the viscous for-
ces away from the surface are negligible), we can eliminate the £ and [ deriv-
ative terms in the viscous terms (gv’ iv and év). We then arrive at the fol-

lowing equation.
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where [~ | ]
0
(kG2 e +(5) n,y wn ¥, anzw n,
§- v(nim;hi)vn'*(%)(nxunmyvn*nzwn)ny
b ) 1 v,
L(ni*niﬂniﬁ-&: (W42 ) 4P (y-1)7 (%), 1+(5) (nyutn v w) (et tny ¥, +nw, )

Equation (2) is solved by the Beam-Warming scheme [1] or more specifically
the Steger~Pulliam implementation of the Beam-Warming scheme {2]. The technique
uses trapezoidal time differencing, expansion of the nonlinear terms about the

th

n time step, and approximately factoring the resulting equation. We then ob-

tain the following finite difference equation

At n -1 At n At At n
3 a+ ] 6EA EIJ VEAEJ) (1 + TGnB - EIVnAnJ - —Z-R—eﬁn) (1 + —Z-GCC €1
An An An 1 An _1 2 2
- - - + +
V‘ACJ)AS At(Ggg + Gng + 6;(_: ReonS ) - egd [(VEAF,) (vnAn)

2..n
(VCAC) 13q

where At is the time increment; §_, Gn. 6; are central differences with respect

13
to the appropriate space variable, €1 and eg are amounts of dissipation added

(second order and fourth order, respectively); all functions with a superscript

oE
m denote that function evaluated at time mAt; Aq = gn+1 - gn; and A = 3&. B=

oF 26 28

=—, C=—— and M = —. Also the turbulence model described in [7] can be inclu~
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ded in Equation (3) by varying the coeficients associated with é. For an ex-
cellent paper describing the scheme see [7].

The scheme coded 1s to solve Equation (3). This process consists of the
following four steps: (1) the explicit computation of the right-hand side; (2)

~ (4) the solution of three block tridiagonal systems of equations.

4. CRAY-1 CODE FOR THIN LAYER APPROXIMATION

The 7600 code to solve Equation (3) is relatively straightforward (or at
least as straightforward as such a large code can be). The right-hand side is
evaluated and then the three block tridiagonals are solved. An important factor
is that the equation to be solved is indexed in the direction associated with that

particular factor. For example, when solving the equation

At,. .n At .
B a +'?f6nn - ernAnJ - iizMn)g = Right-hand side,

it is logical and saves storage space to fix the J and L indices (indices associ-
ated with the £ and ¢ directions, respectively) and solve the resulting system of
equations indexed by K (index in the n direction). This allows the 7600 code to
solve a 30-row (because of size limitations 30 is the largest number of mesh
points used in any direction) block (5 x 5 blocks) tridiagonal.

Unfortunately, although the above procedure is probably vectorizable, it
is nowhere near optimum for the Cray-l. The largest resulting vector would be
30 where multiples of 64 are the optimum vector sizes on the Cray-1 (and bigger
vectors yet gain speed on the CYBER 205).

Because of the vector capabilities of the ILLIAC, the ILLIAC code is quite
different from the 7600 code. The ILLIAC code is written in CFD, [8], vwhich is
similar to FORTRAN so parts were able to be used almost exactly as in the ILLIAC
code. However, due to peculiarities of the ILLIAC, much of the code is ILLIAC
dependent (disc manipulations, manipulation of scalars, scalar arithmetic, etc.).

Hence, we developed the Cray code by using the serial operation flow of the 7600

b




while retaining all of the vector portions of the ILLIAC code that are performed
often. For another Cray~l implementation of the ILLIAC code and the subsequent
comparison, see [9].

Much of the logic in the ILLIAC code is due to the data structure and man-
ipulation. One problem is that the ILLIAC has only 130K words of memory so to
be able to work a very large problem it is necessary to use the disc extensively.
Also, two characteristics of the ILLIAC are that it will only handle vectors of
length 64 or less (and it is inefkicient to use less) and it is very difficult
(nearly impossible) to transfe; any information down the vector. Because of these
limitations the data structure used in the ILLIAC code is to partition the grid
into 8 x 8 x 8 blocks. A row of these blocks in a given direction is then called
a pencil in that direction. Because of the space limitation of the memory, the
scheme is to bring a pencil at a time into core. The sdlution schewe involves'
first sweeping through each of the £~ pencils and with the data in the machine
where the n-g directions are the components of the vector (a £-pencil will con-
tain JMAX 8 x 8 n-Z planes), calculate the necessary £ differences in the right-
hand :ide of Equation (3). The next two steps involve doing the same thing with
the n ind ¢ pencils. These steps are necessary with the ILLIAC since the machine
will not allow arithmetic along a vector. This implementation is convenient since
it makes the right~hand side calculations vector operations. The next three steps
involve sweeping through the pencils in each of the directions again, at each step
solving the appropriate block tridiagonal matrix. For example, Equation (4) would
be solved while sweeping the n-pencils. Since the left~hand side of Equation (4)
involves only n differences, the vector contains an 8 x 8 piece of a £~ plane.
This makes solving Equation (4) a perfect vector operation. We might add that
for each of these sweeps the data must be in the machine in a different order (to
make the operations vector and to make the matrices block tridiagonals). Hence,

some of the sweeps also include the appropriate transposes to get the data in the
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right places. We should also add that by doing the right-hand side calculation
and solving the appropriate block tridiagonal matrix during the same sweep for
the £ and n directions, it is necessary to sweep the data four times rather than
the six indicated above.

One convenient aspect about converting the ILLIAC code to the Cray was that
the above described data structure is also approximately the best to use on the
Cray. Initially it might seem that since the Cray vector operations have no
length restrictions (except that ;he speed is optimum when the vector length is
a multiple of 64), the best approach is to use pencils that include the entire
grid or at least bigger than 8 x 8 planes. This would be possible for problems
if a disk version of the Cray code was desired. However, the above scheme for
the full grid would require approximately 40 x (grid size) + 50 x (largest plane
size) words of storage so only relatively small problems would fit on the Cray.

Our Cray code is written so that it is contained entirely in core. In gen-
eral, the block tridiagonal solver will require 3 x (vector length) x 25 x (maxi-
mum pencil length ~ 2) words of storage. Allowing space for the full matrix is
advantageous because it allows use of canned block tridiagonal solvers such as
that described in [10]. We chose not to use this approach. Our block tridiagonal
solver generates the matrix during the forward sweep so if 8 x 8 pencils are used,
storage due to the matrix solver is minimal (64 x 25 x (pencil length) + 2)).

Thus we have used the same data structure for our Cray code as we used in
the ILLIAC code. The storage requirements for our code are approximately 15 x
(grid size) + 64 x 43 x (maximum pencil length) + 64 x 90 so at least moderately
large problems can be worked using the code.

Hence, the code proceeds to solve Equation (3) by sweeping the data to form
the right-hand side and again sweep the data to solve the matrix equations, by

the same four sweeps in the ILLIAC code.




5. THIN LAYER CODE RESULTS

It is very difficult and somewhat meaningless to compare results of a code
such as this one on different machines. As mentioned earlier the ILLIAC code
used a large number of disk manipulations. The 7600 code used the slower large
core memory. So to compare times of the Cray code (which is all in core) might
not mean much. For lack of other fairer comparisons we will make some of the
above comparisons.

The Cray-1 code runs at abou£ 4.9 seconds per time step for a 32 x 32 x 24
grid. The above time includes the starting and ending overhead which we assume is
negligible. When the vector mode of the Cray is turned off, the code takes 16.7
seconds per time step for the same grid. Thus it is apparent that the code is
gaining efficiency from the vectorization.

It should be noted that in similar tests reported im [9] a Cray code for
the Beam-Warming scheme took 1.8 seconds per time step for a 20 x 30 x 21 grid
(and 1.3 seconds when using the matrix solver given in [10]). Though this

seems like a big difference, it is not. It must be pointed out that a 32 x 32

x 24 grid is almost twice as big as a 20 x 30 x 21 grid. Also the code reported
in {9] calculated the metrics associated with the grid generation once and
stored them while our code recalculated them for each sweep. Another difference
between the two codes is that their code used blocks of size 11, instead of 8.

A consequence of their time saving techniques is that largest grid possible for
their code without going to disk is 30 x 30 x 38 whereas our code will allow for
a 32 x 32 x 48 grid without disk.

An analysis of the time used in the code showing that 40.5X of the time is
spent in setting up and solving the block tridiagonal matrices. Thus it might
be worth using a canned block tridiagonal solver if the storage requirements
make it possible. It might also be worthwhile to develop an efficient block

tridiagonal solver that does not require storage of the full tridiagonal matrix.
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The best estimates for the ILLIAC and 7600 runs of the analogous material
are 5.1 and 19.9 seconds per time step for a 20 x 30 x 21 grid. But again we
admit that these comparisons are not really relevant.

It should be noted that the thin layer code was only run with the free
stream problem and flow about a hemisphere cylinder. For a discussion of the
latter problem see [2]. Since our grids contained of different number of grid
points (and it is impossible to use a grid such as theirs in our code), an
exact comparison of the two codes was not possible. We did, however, plot the
values of p/pon versus x/R as do Steger and Pulliam in [2] (Figure 8) to at
least verify that the pressures on the body are the same. The plots were so

much the same that we did not reproduce them here.

6. FULL VISCOUS MODEL

As mentioned in the Introduction the inclusion of the full viscous effects
has not been completed. There are two reasons why we wish to include the full
viscous effects. The first is to see whether they are actually negligible. The
second reason is to make it easier to calculate flows in certain complex geom-
etries (for instance, flows in corners). To accomplish the latter goal we felt
that it was necessary to include the terms, linearize, factor and then include
a three-dimensional turbulence model. After some work this approach was aban-
doned as being too difficult for the present timeframe.

We next decided that it would be possible to answer the first question
sufficiently well by including the remaining viscous (the terms not included in
the thin layer approximation) explicitly. We are presently in the process of
doing this,

If we return to Equations (1) and (2) it is not hard to see that the parts

of (1) that are omitted in (2) are




_
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Thus our present plan is to uée our present code with the scheme altered so
: as to solve Equation (3) with a term !n added to the right hand side. If the ef-

fects of the full viscous terms are not negligible, then the next step will be to

include the terms in V implicitly.




REFERENCES

[1] Beam, Richard M., and R. F. Warming, An implicit factored scheme for the
compressible Navier-Stokes equations, ATAA 3rd Comp. Fluid Dynamics Conf.,
Albuquerque, NM, June, 1977.

{2] Pulliam, Thomas H. and Joseph L. Steger, On implicit finite-difference
simulations of three~dimensional flow, ATIAA 16th Aerospace Science
Meeting, Huntsville, Alabama, 1978,

[3) Pulliam, T. H. and H. Lomax, Simulation of three-dimensional compressible
viscous flow on the ILLIAC IV computer, presented at the 17th Aerospace
Sciences Meeting, New Orleans, LA, Jan. 1979.

f4] Thompson, Joe F., Frank C. Thames, and C. Wayne Mastin, Automatic numeri-
cal generation of a body-fitted curvilinear coordinate system for a field
containing any number of arbitrary two-dimensional bodies, J. Comp. Phys-
ics, 15 (1974), 299-319.

[5] Eisenman, Peter R., A coordinate system for a viscous transonic cascade
theory, J. of Comp. Physics 24 (1978), 307-338.

f{6] Proceedings of the Symposium on the Numerical Generation of Curvilinear
Coordinate Systems and use in the Numerical Solution of Partial Differen-
tial Equations, Nashville, Tenn., 1982.

[7] Baldwin, B. S. and H. Lomax, Thin layer approximation and algebraic model
for separated turbulent flows, presented at the AIAA 16th Aerospace Sci-
ences Meeting, Huntsville, AL, Jan., 1978.

[8] CFD, A FORTRAN-Based Language for ILLIAC IV, Computational Fluid Dynamics
Branch, NASA-Ames Research Center, Moffett Field, Calif., 1974.

{9 Buning, P. G. and J. B. Levy, Vectorization of Implicit Navier-Stokes
Codes on the Cray-1 Computer, preprint.

10} cCalahan, D. A., W. G. Ames, and E. J. Sesek, "A Collection of Equation

Solving Codes for the Cray-1" SEL Report #133, Systems Engineering Labor-
atory, Univ. of Mich., 1979.

-10-




2 Foan . . e e e —

L S v¢-n C. l-' ' > Mns Pavt .:‘t"n Datc Enteeed)

- wm—— S mema

REPORT DOCUNENTATION PAGE HEF R COMPEE TN O R

h)

1. REPORT NUMRBIR OVY ACCESSION NO.| ). ﬂlfttlT'S CATALOG NUMBER

AFOSR-TR- 82-04" BiSNIN e

" TITLE (aad Subtitle) F S TvYyPE OF REPORY & PERIOD COVERED
NUMERICAL SQLUTION OF THE THREE-DIMENSIONAL FINAL, 15 JUN 79~30 SEP 81
NAVIER- {OKES EQUATION 6. PERFORMING O%G. REPOART NUMBER

RIC No. 64
7. AUTMOR(®) 8. CONTRACT OR GRANT NUMBEA/s;
James W, Thomas F49620-80-C~-0078
9. PERFCRMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENTY PROJECT. TASK
Resear h ‘nstitute of Colorado AREA & WORK UNIT NUMBERS
Drake  reekside Two, Suite 200 PE61102F; 2304/A3
2625 Fedwing Roed, Fort Collins CO 80526 .
V1. CONTUDLLING OFFICE NAME AND ADODRESS 12. REPORT DATE
Matheratical & Information Sciences Directorate 82
Air Fopce Office of Scientific Research - 3. " MUMBER OF PaGES

1 Bollirg AFB DC 203.%2 1
4. MONITORING AGENCY A [ RESS(iL o ¢ rom Conitrolling Oftica) | 15. SECUMTY CLASS. (of this report) .

UNCLASSIFIED
e sagﬂwﬁ‘_:'c‘“m‘/°°"“°"“°'N°

16. DISTRIBUTION STATEMENT (of sis Repory) .
Approved for public relme, diatribution uul:imitnd

o ’S

V3. DISTAIBUTION STATENENT (f fhe shetratt sniontd in Biock 20, 1T MEwseRs leem Roporl

18. SUPPLEMENTARY NOTES

&

19. KEY WORDS (Coatinue en nm“ Mum and tantily by block nm
Compressible Naviex»sm equntms: bem—wqmiﬂ schene; voctor processor;
Cray-1.

A three~dimensional vmioa of e Bom-wmm mm tw uoa,ving for coempres—
sible Nav1er-Stok” emum AN mmmnm _ ?ﬁ- Cray=l computer. The schemq
! ; totally yectorized, allows

W{W wodel. Timings
of. the Ul viscous model

is included.

FORM '
m VIAN T ‘m

i

% ) "
!;‘ A

A

ﬁ"?’ 2{;’}?'

PN
s q'l‘ '.' ) " vy

Bk
-

=

LRAE L XX
gt
Py

R

N







